Applied Mathematics Seminar
When:
 Thursday, November 19, 2015 from 3:00pm to 4:00pm
Where:
 Wilson Hall  view map
Description:

Prathish Kumar Rajaraman from Department of Chemical and Biological Engineering, MSU will speak at Applied Mathematics Seminar on A New Computationally Efficient Data Assimilation Approach for Finite Element Models.Details: Recent advancements in the field of echocardiography have introduced various methods to image blood flow in the heart [1]. Our particular interest is in the left ventricle (LV) of the heart, which pumps oxygenated blood from the lungs out through the aorta. One method for imaging blood flow is injecting FDAapproved microbubbles into the left ventricle, and then, using the motion of the micro bubbles and the frame rate of the ultrasound scan (i.e., using Particle Imagining Velocimetry or echo PIV), the blood velocity can be calculated. In addition to blood velocity, echocardiologists are also interested in calculating pressure gradients and other flow properties, but this is not currently possible because the velocity data obtained is twodimensional and noisy. Our goal is to assimilate two dimensional velocity data from microbubble ultrasound experiments into a threedimensional computer model. In order to achieve this objective a numerical method is needed that can approximate the solution of a system of differential equation and assimilate an arbitrary number of noisy experimental data points at arbitrary locations within the domain of interests to provide a ‘most probable’ approximate solution that is properly influenced by the experimental data [2]. We propose a new numerical method for combing twodimensional noisy echoPIV data, which is computationally cheaper than previous approaches [3]. The approximate solution is calculated using continuous interior penalty finite element method (IPFEM) coupled with a leastsquares finite element method (LSFEM) for integrating the noisy echoPIV data. This framework allows users with the flexibility of using existing numerical approaches for differential equation and complement the solution using LSFEM framework for data assimilation. The choice of LSFEM approach is due the flexibility when assimilating noisy echoPIV data since the method can weight more accurate echo PIV data and use a lower weight for less accurate data. The new numerical approach have been used to predict the 3dimensional LV blood flow. Results from the current method clearly shows the impact of matching the echoPIV data and visualizing the 3dimensional velocity field.REFERENCES1. Borazjani, I., et al., Left ventricular flow analysis: recent advances in numerical methods and applications in cardiac ultrasound. Computational and mathematical methods in medicine, 2013. 2013.2. Heys, J.J., et al., Weighted leastsquares finite elements based on particle imaging velocimetry data. Journal of Computational Physics, 2010. 229(1): p. 107118.3. Rajaraman, P.K., et al., Echocardiographic particle imaging velocimetry data assimilation with least square finite element methods. Computers & Mathematics with Applications, 2014. 68(11): p. 15691580.
Contact:
Share: