Montana State University

« Return to MSU Today Day | Month | Year

Physics Colloquium Series

Friday, April 26, 2013 from 4:10 pm - 5:00 pm
Engineering and Physical Sciences Building, Room 108

Dr. Carl Bender from Washington University in St. Louis will present "Complex extension of quantum mechanics"

The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H=p2 ix3 which is obviously not Dirac Hermitian, has a real positive discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory!

Evidently, the axiom of Dirac Hermiticity is too restrictive. While H=p2 ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past two years, some of these properties have been verified in many different laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H=p2-x4, which contains an upside-down potential. We will discuss this potential in detail, and explain in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete.

The cost of this event is: free

For more information go to:
http://www.physics.montana.edu/news/abstracts13/bender.pdf

For questions regarding this event, please contact:

Sarah Barutha
406-994-6186
sbarutha@physics.montana.edu

Listed as: Faculty Community Students Lectures and Speakers Academics Audience Staff


Event Photos:
Did you attend this event? Do you have photos from previous years? Share them!